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I. INTRODUCTION 

Classical linear filtering theory was founded \>j 

Wiener (4) in 19^9 and Bode and Shannon (1) In 1950. Prob­

lems in optimal prediction and smoothing of random or sto­

chastic signals were considered where additive measurement 

noise might also be present. The optimal filter is spec­

ified by its impulse response or transfer function. 

In i960 R. E. Kalman (3) introduced the "state-transi­

tion " method of linear filtering. Dynamics of the system , 

are described by state-variable equations which are a set 

of simultaneous first-order differential equations often 

written in matrix form. Dependent variables are referred 

to as states of th^s system. Random signals are represented 

as the output of linear dynamic systems excited with white 

(uncorrelated) noise. The optimal filter is specified by 

a matrix of coefficients relating available discrete mea­

surements t-o a priori estimates of the states. 

In some applications the measurements are In fact 

continuous functions of time or a combination of discrete 

and continuous functions. Continuous measurements can be 

sampled and incorporated into the filter with other discrete 

measurements. However, if additive measurement noise is 

present, it might be reasonable to assume that a better 

discrete form or value of the continuous measurement can 
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be obtained. If so, better discrete estimates of the random 

signals or states should result. 

This dissertation investigates one method of presmooth-

ing continuous measurements within discrete time intervals 

before incorporating them into a discrete Kalman filter. 
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II. DISCRETE MEASUREMENTS AND DISCRETE FILTERS 

A. System Description 

State variable equations will describe system dynamics 

in matrix form. The general solution for state response 

is also a matrix equation. This form is especially conven­

ient for discrete time problems because a digital computer 

can be used for the numerous calculations involved. 

The following set of equations will be used to describe 

system dynamics. 

x(t) = A(t)x(t) + G(t)u(t) 1 • 

y(t) = M{t)x(t) + n(t) 2 

X(t) is the n-vector of state variables; u(t) is the m-

vector of unity white noise driving functions; y(t) is the . 

p-vector of measurements; n(t) is the p-vector of additive 

measurement noise; and A(t), G(t), and M(t) are nxn, nxm, 

and pxn matrices respectively. These matrices will be 

assumed to be constant during the discrete time intervals. 

The general solution of Equation 1 is 

t 
x(t) = cp(t, tQ)x(tQ) + / cp(t-T)G( T)U( T)dT 3 

to , 

where cp(t,tQ) is the state transition matrix. The state 

at time t consists of the projection of the state at t^ 
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through the transition matrix plus a contribution due to 

the random driving function. Therefore, an element of un­

certainty exists about the true value of the state at time t 

If a perfect measurement of each of the states were avail 

able at time t, any uncertainty about the true value of the 

states would be eliminated. However, In many cases a direct 

measurement of each state is physically impossible. Further 

more, perfect measurements generally cannot be instrumented. 

Filters are therefore devised to utilize any information 

which is available from existing measurements. This infor­

mation is used to reduce the uncertainty in the estimate of 

the true value of the state variables. 

B. Kalman Filter Equations 

Kaiman's discrete filter can be described as 

where 

A 
x^ = a posteriori estimate of x at time t^ 

x' = a priori estimate of x at time t 
n ^ n 

b^ = weighting matrix at time t^ 

y^ = measurement at time t^^ 

A 
y^ = a priori estimate of y at time t^ 



www.manaraa.com

5 

The measurement is described by 

"n = + "n 

where 

M = output matrix at time t 
n n 

n = measurement noise (white) at time t 
n n 

Since the expected values of the driving functions 

and measurement noise are zero, 

%-l *n-l 

and 

• k  " Vn 7 

The method of analysis and results will be useful for 

comparison with other filters. Equation 4 specifies the 

form of the filter, and analysis should yield a measure of^ 

the accuracy of the estimate x. The optimum weighting ma­

trix should also be determined. Accuracy will be measured 

by the error-covariance matrix, and optimum will be defined 

as minimum mean square error. 

The a posteriori estimation error at time t^ is defined 

as 

- S 
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A 
y 

"n "n n "n n 
= x' - X + b (y_ - y') 

Substitution of Equation 5 into Equation 8 yields 

9% = (I - + Vr , 9 

where e' is the a criori estimation error, and I is the 
n 

identity matrix. 

The a posteriori error-oovariance matrix and loss 

function L are defined to be 

P = E(e e'^) 10 
n n n 

and 

L = E[Tr(e e^)] 
n n 

= Tr(P^) 11 

where Tr(P^) is the trace of the matrix P^, and E is the 

expectation operator. When Equations 9 and 10 are used in 

Equation 11, 

L = EkrCd-b^Mje' + b^r.^ ] [( + b^n^f) 

= Tr[(I-b„H„)E(e-e;'')(I-b̂ Hj'' 

+ (I-b M )E(e'n'^)b^ 
n n n n n 
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The a priori error-covariance matrix P* and noise covariance 

matrix will be defined as 

and 

P = E(e'e'^) 13 
n n n 

Because the measurement noise is assumed to be white, no 

correlation exists between n^ and e^. Thus, 

L = ^ 15 

The optimum weighting matrix b^ is found by differen­

tiating the loss function L with respect to b^. 

^ + 2Vr. = ° 

Solving Equation 16 for b^ yields 

b = P*m'^(M P*M + V 17 
n n n n n n n 

* 
The a priori error-covariance matrix P is related to 

n 

the previous a posteriori error-covariance matrix P^ 

eà = 

= "B-A-I - ^ cp(t„-T)0„u(T)aT) 

t n-1 

= cp e T - /" cp(t -T)G u(T)dT 18 
n-x n-i ^ n Yi 

^n-1 
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Noting that no correlation exists between the error e^ ^ 

and the white noise driving functions in the Interval 

(t ,t ), Equation 18 leads to 
n—1 n 

î'n "  ̂"n-l 

where 

H 

n-1 S-1 

The a posteriori error-covariance matrix is found 

from Equation 15• 

In summary, the Kalman recursive filter equations are 

K ' k *  - K ' '  ' *  

•M* T» * T» 1 
b = P MMM P + V 17 
n n n n n n n 

P = (I-b M )P*(I-b M + b V b^" 21 
n  n n n  n n  n n n  

where 

' VlVl^L ̂ "n-l - " 
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Equation 21 can also be expressed in other forms such as 

* , * T V T 
P = P - b M P + V )b^ 21a 
n  n  n n n n  n n  

* rj\ 
This form is convenient because the term 

must first be calculated to determine b^. Recalculation 

is not necessary. 

/ 
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III. CONTINUOUS MEASUREMENTS AND DISCRETE FILTERS 

The physical measurement process can be continuous, 

discrete, or combination of both types. The discrete filter 

designed for discrete measurements could be applied to any 

of these situations by sampling the continuous measurements 

to obtain discrete values. However, some of the available 

information in continuous measurements may be lost by sam­

pling. A continuous- filter designed for continuous measure­

ments would have no provisions for incorporating available 

discrete measurements. Information may also be lost in 

this case. 

If the filter is constrained to ,be discrete and some 

or all^^o^^ the measurements are continuous, more information 

might be recovered by presmoothing rather than by sampling. 

Any discrete measurements can still be utilized as shown 

in Chapter II. 

In a manner similar to that of James, Nichols, and 

Phillips (2) a particular filter may be chosen and selected 

parameters optimized. This method may not yield the abso­

lute optimum filter, but it might provide a substantial 

improvement. Before a reasonable choice can be made, sev­

eral factors must be considered and related to the discrete 

Kalman filter. Not only must continuous measurements be 

smoothed to reduce unwanted measurement noise, but a discrete 
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value must be formed before use in the estimation equation. 

Thus, instrumentation will differ from that required to 

--sample the measurements. Because the basic filter design 

will be altered, new filter equations must be derived so that 

the accuracy of resultant estimations can be calculated. 

Finally, the filter must be capable of producing improved 

results to be of any practical use. Improved results must, 

however, be balanced against additional cost of instrumenta­

tion and complexity of the filter equations. 

The discrete Kalman filter described by Equation 4 

weights the discrete a priori measurement error y^ - y^ 

at time t^. By weighting the a priori measurement error 

rather than the measurement itself, a relatively simple rela­

tionship, is developed between the a posteriori estimation 

error and the a priori estimation error as shown in Equa­

tion 9- For the same reason it is convenient to choose a 

filter which smooths the continuous a priori measurement 

error rather than only the measurement.. Furthermore, one 

of the simplest methods of smoothing a signal over a time 
i 

interval is to average it. A discrete value or form is 

produced which represents the average continuous measure­

ment error over the time interval. 

Therefore, a reasonable filter to choose which pre-

smooths the continuous measurement error is described by 
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n-1 

[y(t) - y'(t)]dt 22 

This measurement error consists of the a priori estima­

tion error e'(t) and the additive measurement noise n(t). 

Averaging is performed to smooth the measurement noise, not 

the estimation error. However, the filter described by 

Equation 22 smooths both. Thus, the correlation time of 

the estimation error or state response is related to the 

length of the discrete time interval which may be used. 

Results in Chapter V provide insight to this basic problem. 

The assumed statistical character of the noise n(t) is 

an important factor. White noise implies no time correla­

tion. This may be realistic or practical for a discrete 

measurement process where considerable time elapses between 

measurements. It is not a very realistic assumption, how­

ever, for a continuous measurement process. Even though 

the correlation^time may be small, a certain amount is still 

more likely to occur than not. Thus, any continuous mea­

surement noise will be assumed to be colored or Markov in 

character. 

A. Optimal Filter Equations 

The filter described by Equation 22 w'.ll be analyzed 

in a manner similar to that in Chapter II. The a posteriori 
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estimation error at time t^ is 

A 
e = X - X 
n n n 

= x' - X + 7# [y(t) - y'(t)]dt 23 
n n 

n-1 

The measurement in the interval becomes 

y(t) = M^x(t) + n(t) 24 

where is the output matrix during the interval (t^_^,t^) 

Substitution of Equations 3 and 24 into Equation 23 yields 

b M tn 

®n = K-1 - -if ' 
^n-1 

tn • 
- / Cp(t^.T)G^u(T)dT 

tn-1 

b M tn t 
+ 4r^ / J" cp(t-T)G u(T)dTdt 

b tv, 
+ — / n ( t )dt 25 

tn-1 

The loss function L is obtained from Equations 11 and 

25. 

• b t„ 
• L = Tr[f<p„.i - f  P„.i 

'n-1 
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â  ̂
I 
M 
P-
ct 

l̂ ct 
I 

a"® 
I 
M 
M 

a 
I 

(D 

pi 
ct 

a°:a 

o* 
r\) 

a 

M 
ct 1-, c+ 
a 
I 
M 

"If 

td 

a^ 
ct 
M 

ct 
I\3 

Pi 
ct 
M 
Pi 
ct 

ro 
D* 
a h3 

Ç 
ct 

K) 
I 

H ro 

H 
M p. 
H 
W 
pi 
Ct 
M 
pi 
ct 

l\) 

V 
a kg 

> 
ct 
tV) 

ct ct 
a B 
I 

a*^ "^5^ 
H' 
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b M t];] t];] m rn 

" tn-l tn_l 

 ̂ „r../̂  \.T , T,̂  , „T̂ T-
- ,,2 / I  E{n(t2)e^_^)cp (tj-t^.^jatjdt^H^b^] 

™ S-1 n-1 

26 

Equation 26 can be rewritten more conveniently as 

L = Tr[;q^_i - Vn«„-1'''n-1'"n-l " 

+ «„-l -  - «n-l> -  <Vn-l - %-llX 

+ *  \ - i  -  V r , - i  -  " 

by defining 

V l = : f e f  2 8  
S-1 

t t 
H = / /" cp(t -T )G E{U(T )u'^(>T )} 
n — i j .  + .  n i i j  X  6  

^n-1 n-1 

"11-1= ^ } q>(t-T^)G^E{u(T^)u^(T2)) 

n-1 n-1 n-1 

29 



www.manaraa.com

lé 

R 
n-1 At' 

,n 

, t ^ t t T 
n-1 n-1 n-1 n-1 

cp(t^-T^)G^ 

t t 
T = E{n(t^ )n'^(t^) }dt dt^ 31 

" ^n-lVl 2 2 1 

V l = i r  3 2  
"-1 

t t 
W ^ = -^ J*" -c" cp(t -t )E(e n^(t )]dt dt 
n-1 A-t- 4- +- -'- n—i n—1 c. l d 

^n-l. n-1 
) 

^ / ^n-l®^®n-l" (tgJlatg 33 
S-1 

The optimum weighting matrix is again found by-

differentiating the loss function L with respect to b^. 

- 2(Un.iMn " Cl' * = ° 

34 

where 

\ . r  = W - l  + <-!< 35 
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which is a symmetric matrix. Solving Equation 3^ for 

yields 

\ ' < - l K  -  < - 1 ^  

+  \ - l K  + Vl - Vl^"' 36 

The a posteriori error-covariance is obtained from 

Equation 27. 

ï'n = '"n-l -

+ «„-l - "n'Vn-l - ««-l' - (Vn-1-

^  *  \ - l  -  ̂ « - i K  3 7  

B. Suboptimal Filter Equations 

The filter described by Equation 22 shows that the 

a posteriori estimate of x is composed of an a priori esti­

mate of X and a weighted average of the measurement error. 

Accuracy of this filter is specified by the error-covari­

ance matrix in Equation 37. Both of these equations are 

valid regardless of how the weighting matrix b^ is deter­

mined. 

The mean square error or loss function will be minimum 
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if the optimum weighting matrix described in Equation 36 

is used. However, another weighting matrix which is simpler 

in form can yield comparable results under certain conditions. 

The correlation between e , and n_ in the discrete 

Kalman filter was zero because n^ was considered to be white 

noise. But the noise n(t) in the continuous case is assumed 

to be Markov. Therefore, some correlation does exist be­

tween e , and n(t) in the interval (t .,t ). Equation 25 
n — 1 - n — in 

shows that the error e at a particular point in time is 

composed, of terms involving the error at the previous point 

in time, the white noise driving functions occurring between 

the points in time, and the measurement noise occurring 

between the points in time. The white noise driving func­

tions in the interval (t, _,t . ) are not correlated with 
n —c n —J. 

n(t) in any interval. However, n(t) in the interval 

t _) is correlated with n(t) in the interval (t ,,t ) 
n—i. H" J- n 

because n(t) is Markov noise. If the length of the time 

intervals are large relative to the correlation time of n(t), 

any correlation between e^ ^ and n(t) in the interval (t^_^, 

t^) may be insignificant. If this is true, then the cor­

relation between e^_2 and n(t) in the interval 

will be even less significant. 
tn m 

If the assumption is made that / E[e^ ^n (t)Jdt is 
tn-l 

zero, another weighting matrix can be calculated by 
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where Q„_i» ^n-l' ^n-1 assumed to be zero. Since 

this is not the optimum weighting matrix, it must be con­

sidered as suboptimum. 
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IV. EXAMPLE 

The example system In Figure 1 described in standard 

block-diagram terminology was chosen to illustrate how the 

filters previously discussed are applied to a problem. It 

will also provide a basis for comparison of results. The 

system is continuous so the measurement can be considered 

to be sampled or averaged. First-order dynamics were chosen 

so that evaluation and interpretation of results would not 

be unnecessarily complicated. Finally, the continuous 

Wiener filter can be found with relative ease. This will 

provide an optimum continuous result to compare with opti­

mum and suboptimum discrete results. 

A. Discrete Kalman Filter 

The state variable x(t) is related to the input u^(t) 

by 

x(t) = u^(t) 39 

Since the measurement noise n(t) is time-stationary Markov 

noise rather than white noise, it can be thought of as the 

result of passing white noise through a linear dynamic system 

as shown in Figure 2. The differential equation relating 

n(t) to U2(t) is 
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Ui(t) 1 
s 

x(t ) 1 
s 

+ s 

n(t) 

CO ( T) = 6( T) 
"l 

II t-

>
 

Example system 

y(t) 
-> 

Ujlt) 

= 6(T) 

n(t) 

> 

D„(T) 

Figure 2. Linear dynamic system 
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n(t) = - 3n(t) + Ugft) 40 

The noise n(t) is now considered an additional state var­

iable to be incorporated into the dynamics of the system. 

By defining 

and 

x^(t) = x(t) 

Xj,(t) = n(t) 

41 

42 

Equations 1 and 2 become 

x^(t) ^0 0 \ /xj^(tr 

0 - 3 / \Xp(t V 

1 0 \ / 

0 \ Ugft ) 

and 

y(t) = (1 1) 
x^(t)\ 

+ 0 

Therefore, 

cp. 
n 

1 0 \ 

-$At 
0 e 

and 
/ 

43 

44 

45 

V = 0 
n 

46 
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Term by term evaluation of ^ yields 

tn tn 
H(L,L) , = ; ; 6(T -T )dT dT = At 47 

n—1 i. -f- 1 d X 
^n-l n-1 

H(l,2)^ -, = H(2,l)^ =0 48 
n—1 xj-j-

n-1 . 4-
tn-1 n-1 

t -2 3( t - Tp ) 
6( Ti-T^ )dTidT2 = ; 2o^Be ^ dig 

^n-l 

= ,2(1 - e-ZBAt) 49 

0 ,2(1 - s-2eAt,j 

H(1,1) shows that th^ a priori mean square error 
Ï1 — 1 

of state [P (1,1)^] is increased each time by the length 

of the discrete time interval At. This is analogous to the 

random-walk problem of probability theory. The a priori 

mean square error of state is increased by o^(i-e~^^^^'). 

As At approaches zero, both of these terms also approach 

zero. The measurement is considered to be perfect since 

the noise n(t) is treated as a state variable. Thus, as 

At approaches zero, the discrete Kalman filter should con-
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verge to the continuous Wiener filter. However, as At 

2 
Increases, H(2,2) ^ approaches a which is constant, but 

n-i 

H(l,l) - increases as At. Since measurements occur less 
n-1 

frequently in this situation and the a priori mean square 

error of state increases, the discrete Kalman filter 

diverges from the continuous Wiener filter. Computed results 

in Chapter V illustrate these concepts. 

/ 

B. Optimal Averaging Filter 

The appropriate system equations for the averaging 

discrete filter defined by Equation 22 are 

x(t) = u(t) 51 

y(t) = x(t) + n(t) 52 

where A(t) = 0, G(t) = 1, M(t) = 1, and cp(t) = 1. Note that 

n(t) is not considered to be a state variable but to be 

additive measurement noise. 

Several terms must first be evaluated. From Equation 

.8 

1 

n-1 

From Equation 20 

H T = /" 6(T,-T )dT.dT = At 47 
n—1 , . 1 / 1 c 

^n-l ^n-1 
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From Equation 29 

"n-l ° "i 
> > ; 
t t ^ t 
n-1 n-l 1 

•n 
r 

-p 

'n-l t , 
n—1 

ar. 

tn-l 

= At 5^ 

From Equation 30 

"n-l 

tn 
; 

^n-

tn 

1 ̂ n-1 

6(T^-T2)dT^dT2dt^dt2 

^n-l ^n-1 

t. 

*11-

/2 

1 ̂ n-1 

? dT^dt^dt^ 

^n-l 

tn 
/ 

tn-1 

/" > dT^dt^dt^ 

-1 

> 
tn-1 

ta 

^n-1 

-1 TYN TY, 

" tn-l «2 
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tn-1 

+ -& /" -  ^ n - l ^ n  - 4  '• tn-itgiatg 
tn-1 

= A k  

3 55 

From Equation 31 

tn-1 n-1 

V i V i  '  '  

+ ̂  > !p ,2e*''i"'2'aT,aT. 
t„.i 2 1 

ty, „ 2  -0T. Pt T 3T -gt 
^ J"" "%- (2-e ^ e - e ^ e ")dT 

tn-l ® ' 

Additional consideration must be given to the evalua­

tion of Q - and W _. The noise n(t) occurring in the inter-
n-1 n-1 

val (t ,,t ) is correlated with the measurement noise which il-l T Ï  

has occurred in each of the previous time intervals. However, 
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the degree of correlation is different in each case as is 

the weighting factor. It is possible at each point in time 

to determine the cumulative effect of this correlation and 

weighting by summing each calculated contribution. But this 

method leads to a growing memory problem because information 

must be saved from each of the previous time intervals. 

effect,of the measurement noise which has occurred in each 

of the previous time intervals, a recursive relationship 

should exist for 

^n-1 " " 

If so, the most desirable feature of the discrete Kalraan 

filter, recursive filter equations would be preserved. 

The unweighted contribution of the measurement noise 

in different time intervals is determined first. Defining 
* 

Since the a posteriori error e^ ^ contains the weighted 

/ 
t. 

E [e ,n'^(t)3dt . 
n -1 

V as 
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and Vg as 

v! = -^ Eb(t )n'^(t )]dt dt 

n-1 n-3 

-BAt 2 2 
= ® ^ ( BAt ) 

* 
the general expression for is seen to be 

,1̂  

' V*., 59 

The weighting factors can be determined by using Equa­

tion 23 to express e^ ^ in Equation 32 in terms of the pre­

vious error e^ ̂ , the driving function u(t) in the Interval 

(t _,t ,), and the measurement noise n(t) in the interval 
n-2' n-1 

(t ,t ). Thus, Equation 32 becomes 
n-2 n—1 

^N-L 

n-1 
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\_2 

where-no correlation exists between n(t) and u(t). In a 

similar manner 

•/ 
t %-l ' -à f" 
'n-1 

^%-?~^N-L^N-L^N-2^ "^N-L 

T N B 
* f E(N(TI)NT(T2)!AT2ATIBT_. 

^ n-1 ^n-3 

(^N-2"TN-L^N-L*N-2) "^N-L 

1  ^ n - 1  ,  .  r n  m m  

AT^ / / E[n(t^)n (tg) 3d.t2dt^b^_^cp^_^ 6l 

^ ̂ n-l n-2 

This process could be carried further, but the recursive 

relationship can be detected from inspection of Equation 

61. If S T is defined as 
33 — 1 

where 
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then 

«n-l = ^5 

For the example in Figure 1 

S„-L = «« 

and 

^N-1 ~ ^N-1 

Comparison of Equations IP and 33 shows that 

^N-L " ̂ N-L^N-L 

Thus, for the example in Figure 1 

• "n-l = ^9 

and 

= 2W„-1 70 

C. Suboptimal Averaging Filter 

Since the only difference between the optimal and 

suboptimal averaging filter involves neglecting and 

^ in the calculation of b^, all necessary quantities 

have been determined. 



www.manaraa.com

31 

D. Continuous Wiener Filter 

Because the example in Figure 1 is a continuous system, 

it is possible to determine the optimal continuous Wiener 

filter. The resultant error-covariance should represent a 

lower bound which can only be approached by any discrete 

filter. 

The Wiener problem is formulated as shown in Figure 3» 

The response g(t) can be written as 

t 
g(t) = f y(T,t) [n(t-T) +x(t-T)3dT 71 

0 

where 
t 

x(t) = / u(t-T)dT 72 
o 

The mean square error is averaged in an ensemble sense 

because x(t) is a nontime-stationary process. 

e (t) = / / y(u,t)y(v,t)[n(t-u)n(t-v) + 
o o 

x(t-u)x(t-v)3dudv - 2 S y(u,t) x(t-u)x(t)du 
o 

+ x2(t) 73 

No correlation exists between u(t) and n(t). 

Minimization of the mean square error using variational 

calculus leads to the integral equation 
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u(t ) 1 x(t)^ 
s 

Y(T,t) = ? g(t) ̂  x(t) 

VJJ 

CP^('T) = kô( T) CP̂ ( T) = |T| 

Figure 1. Wiener filter problem 
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/ y(v,t)[n(t-u)n(t-v) + x(t-u)x(t-v)3dv 
o 

- x(t-u)x(t) =0 . 74 

where 0 < u, v < t. For the example in Figure 1, Equation 

74 becomes 

a^e'^" / y(v,t)e^^dv + a^e^" / y(v,t)e~^^dv 
o u 

u t 
+ k(t-u) / y(v,t)dv + kt / y(v,t)dv 

o u 

t 
- k J" vy(v,t)dv - k(t-u) = 0 75 

u 

A lead-lag filter of the form 

y(v,t) = o^6(v) + Cge"*^^ + o^e"^^ 76 

is a solution for Equation 75• Results of substituting 

Equation 76 into Equation 75 and solving for the unknown 

parameters are 

0,2 = _]!§ YY 

ZA^P+K 

Ç ^ a[a^+B^-3]sinh at+a^ Cl-ZBlcosh at yg 

^ a0[23-l]sinh at + 0[0-0^-a^]cosh at 
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a[a3+afg_ag2_g3+g2_a2]_Gt  
C = --- R--- -- -- -- -E 79 

a3[23-l3sinh at+p[g-& -a ]cosh at 

Ç ^ A(A^-3^)(L+A-G)E~°-^ Q Q  

^ agCzP-llsinh ot+gLB-B^-a^Joosh at 

The steady-state values of these parameters are 

CLGG = # • 

= 82 
• ss 

C = 0 83 
•^SS 

The resultant steady-state error can be written as 

where 

Y = 2ka^3 85 

The Appendix contains a more detailed derivation of 

these equations. 
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V. RESULTS 

The recursive filter equations developed in Chapter IV 

for the example system were programmed for calculation on 

an IBM Operating System/360, digital computer. With the 

initial error-covariance matrix set to zero in each case, 

the recursive calculations were repeated until the a poste­

riori error-covariance reached a steady-state value. Various 

discrete time intervals were chosen for each of five sets 

of Markov measurement noise parameters. Figures 4, 5, 6, 

7, and 8 illustrate the calculated steady-state a posteriori 

error-covariance of state x^ for each filter discussed in 

Chapter IV with one exception. Suboptimum calculations 

were not attempted for the case illustrated in Figure 7 

because optimum results showed that no improvement was pos­

sible by averaging. 

In Figures 4, 5> 6, and 7 the only noise parameter 

varied is S which is inversely proportional to correlation 

time. Figure 8 illustrates the results obtained with a 

2 
variation in the noise parameter 0 which is proportional 

to magnitude. 

As the time interval approaches zero in every case, 

discrete Kalman filter results become comparable to those 

of the continuous Wiener filter as expected. However, the 

averaging filter does not behave in the same manner. If 
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improvement is possible by averaging the measurement error, 

it only exists for a finite range of discrete time intervals. 

When the interval is too large or too small the averaging 

filter produces less accurate results than the discrete 

Kalman filter. Different reasons exist for each of these 

extreme cases. 

Since the measurement noise is not considered as a 

state variable, an effective perfect measurement is not pos­

sible. The contamination is represented by the terms , 

Q , , and W , . The most significant of these is -, which 
._n-l n-1 n-i 

2 
tends to o which is constant as At approaches zero. Thus, 

at this extreme the averaging filter diverges from both the 

discrete Kalman filter and the continuous Wiener filter. 

The suboptimum averaging filter which neglects and 

W T in the calculation of b is more sensitive to this con-
n-1 n 

dit ion than the optimum averaging filter. 

At the other extreme, ^, and W^_^ all approach 

zero as At becomes large. Thus, the effect of the measure­

ment noise tends to become negligible. But the averaging 

process was purposely chosen to produce this desired effect. 

Therefore, some other reason must exist to explain why the 

averaging filter does not produce improved results for large 

At. In Chapter III a decision was made to average the a 

priori measurement error rather than only the measurement 
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because resultant filter equations were much simpler in form. 

The measurement error contains the measurement noise and 

estimation error, and both are averaged. Because the es­

timation error of the state does change proportional to 

At, its average does not represent the true estimation error 

at the time of interest t^, and weight is being given to 

this average. The problem increases as At becomes larger. 

Thus, for large values of At, requirements for improved 

results by averaging the measurement error are incompatible 

with existing system dynamics. Since the average measurement 

noise does approach zero, the optimum and suboptimum aver-

aK- filters behave identically at this" extreme. 
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Figure 4. Calculated steady-state a posteriori error-covariance of state 
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Figure 5. Calculated steady-state a posteriori error-covariance of state 
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Figure 6. Calculated steady-state a posteriori error-covariance of state 
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Figure 7. Calculated steady-state a posteriori error-covariance of state 
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Figure 8. Calculated steady-state a posteriori error-covariance of state 
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VI. CONCLUSIONS 

The results In Chapter V illustrate how the correlation 

times of the measurement noise and state responses are re­

lated to the length of the discrete time interval. 

For substantial improvement to be realized by pre-

smoothing the length of the discrete time interval must 

be small relative to the correlation time of the state 

response and large relative to the correlation time of 

the measurement noise. A definite range of permissible 

discrete time intervals exists where improvement is pos­

sible by presmoothing. The effective measurement noise is 

significantly reduced in this range. 

If the discrete time interval is small relative to the 

correlation time of the measurement noise no presmoothing 

is possible. In this case measurement noise cannot be re­

duced by the averaging filter. The discrete Kalman filter 

with measurement noise considered as an additional state 

variable has an effective perfect measurement. Thus, as 

the time interval approaches zero, the results approach those 

of the optimal continuous Wiener filter. 

If the discrete time interval is large relative to the 

correlation time of the state responses, presmoothing re­

duces the effect of measurement noise. However, the state 

response portion of the measurement error is also signifi-
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oantly smoothed which is undesirable. Presmoothing is in­

tended to reduce only the measurement noise so that a better 

estimate of the true state, not the averaged state, can be 

found. 

Therefore, under the conditions described, improved 

results can be realized in discrete filtering by presmooth­

ing available continuous measurements. A decrease in re­

quired computation time might also be realized for two 

reasons. The size of matrices are larger when continuous 

measurement noise is considered as a state variable, and 

comparable results can be obtained by averaging the measure­

ment error with larger discrete time intervals. 
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IX. APPENDIX 

The error e(t) can be written as 

e(t) = g(t) - x(t) 

t 
S y(T,t)Cn(t-T) + x(t-T)]dT - x(t) 86 
o 

Because the problem is nontime stationary, the mean square 

error must be averaged in an ensemble sense. 

e (t) = / / y(u,t)y(v,t) [n(t-u) + x(t-u)] 
o o 

[n(t-v) + x(t-v)]dudv 

- 2 / y(u,t) [n(t-u) + x(t-u)]x(t)du + x (t) 
o 

87 

The driving function u(t) and the measurement noise n(t) 

are uncorrelated, so Equation 87 reduces to 

t t 
e (t) = / / y(u,t)y(v,t)[n(t-u)n(t-v) 

o o 

+ x(t-u)x(t-v)]dudv 

- 2 f y(u,t)x(t-u)x(t)du + x^(t) 73 
o 

To minimize the mean square error y(T,t) is replaced 
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by y(T,t) + e\(T,t), and the resultant mean square error 

is differentiated with respect to e. 

) = -A [ J" f [y(u,t) + e\(u,t] 
DE ÔE Q  o  

[y(v,t) + eA.(v,t) ][n(t-u)n(t-v) 

+ x(t-u)x(t-v)3du dv - 2 / [y(u,t) 

+ eX(u,t)]x(t-u)x(t)du + x^(t)3 

t t 
/ f [y(u,t)X(v,t) + y(v,t)\(u,t)] 
o o 

[n(t-u)n(t-v) + x(t-u)x(t-v)]du dv 

t 
- 2 f X(u,t)x(t-u)x(t) du = 0 88 

o 

Therefore, 

t t 
2 S f y(v,t)\(u,t)[n(t-u)n(t-v) + x(t-u)x(t-v)]du dv 
o o 

-2 / X(u,t)x(t-u)x(t) du =0 89 
o 

Equation 89 can be rewritten as 

J" X(u,t) [/ y(v,t) {n(t-u)n(t-v) + x(t-u)x(t-v) }dv 
o o 
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-x(t-u)x(t)]du =0 90 

Since the perturbation function X(u,t) is arbitrary, the 

square bracketed expression in Equation 90 must be zero. 

J" y(v,t) [n(t-u)n(t-v) + x(t-u)x(t-v) ]dv 
o 

- x(t-u)x(t) =0 74 

where 0 < u, v < t. 

As intermediate work, the ensemble averages can be 

computed. 

- t t 
X (t) = f S u(t-T )u(t-T )dT dT 

o o 1 2 12 

t t 
= J" / k6( T -T )dT^dT 
0 0 ^ ^ 

= kt 91 

x(t-u)x(t) = / J" U(t-U-T )u(t-T )dT dT 
0 0 D D 1 

t-u t 
= / / k6( T -T +u )dT dT 
00 ^ ^ 

t-u 
= / kdT^ = k(t-u) 92 
o 

Figure 9 illustrates the region of integration for Equation 

92. Figure 10 illustrates the regions of integration 
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T 
1 " t-u 

Figure 9. Region of Integration 
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Figure 10. Regions of integration 
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for Equations 93» 

—-— t—u t—V 
x(t-u)x(t-v) = ; s uft-U-T^juft-V-TgjdTg&Ti 

O O 

t-u t-v 
= s J k6(T -T + U-v)dT dT 

O o 

t —"U 

/ kdT = k(t-u) for u > v 
o 

t-v 
/ kdT = k(t-v) for v > u 93 
0 

n(t-u)n(t-v) = 9^ 

Substitution of Equations 92, 93, and 9^ into Equation 74 

results in 

S  y ( v , t d v  +  J "  y ( v , t  
o u 

u t 
+ S y(v,t)k(t-u)dv + / y(v,t)k(t-v)dv - k(t-u) = 0 
° u 7^ 

The assumed solution 

-OV . . 6°* 76 y(v,t) = C^^iv) + C^e" + 

is then used in Equation 74. The results after integration 

can be written as 
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- at at 

+ [%r + %r: 

C? C 
+ [C^ + — - - 1] k(t-u) - 0 95 

The square bracketed terms are each set equal to zero, 

- a+ 3 a+ 3 ^2 
= 0 96 

^1 - T^Fg - a+g - 0 97 

CGE-GT + C^E°-^ = 0 98 

C,E-*T C_E°T 

-a-3 a-3 ~ ̂  99 

C, C 
=1 + -F - -Ë - 1 = 0 100 

Equation 96 reduces to 

0? = 

ZG^E+K 
77 

Equation 97 reduces to 
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C^(-a2+p2) _ Cgfa+g) + C (o-g) = 0 101 

When Equations 98 and 99 are added, they reduce to 

Cg(l+a-e)e"°* + cy(l-a-e)e*t =.0 102 

Equation 100 reduces to 

C^a + Cg - = a 103 

Equations 101, 102, and 103 can now be solved simul­

taneously for C^, Cg, and . Results are shown in Equations 

78, 79, and 80. The steady-state error in Equation 84 is 

found by evaluating Equation 73» 
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